Haladj sorban a tananyagokon!
Szerezd meg a kupát!
A kupához a témakör összes tananyagát minimum egy -ra kell teljesíteni.
Emelt szintű matematika érettségi szóbeli tételekMegmutatjuk a teljes kidolgozott tételt, úgy, ahogyan a vizsgán pl. el lehet mondani. A videóban kék színnel írtuk azt, amit mindenképp javaslunk, hogy te is írd fel a táblára a vizsgán. Nézzük tehát a tételt.
Feleletemben a kört és a parabolát mutatom be elemi úton és a koordináta síkon. Kitérek a kör és egyenes, valamint a parabola és egyenes kölcsönös helyzetére is. Végül másodfokú egyenletek grafikus megoldásáról fogok beszélni és kitérek néhány matematikatörténeti vonatkozásra is.
Definíció: A kör azon pontok halmaza a síkon, amelyek egy adott ponttól egyenlő távolságra helyezkednek el. Az adott pontot a kör középpontjának, az adott távolságot pedig a kör sugarának hívjuk. A kört egyértelműen meghatározza a síkon a középpontja és a sugara.
Kimondok egy körről szóló tételt: A K(u,v) középpontú, r sugarú kör egyenlete (x-u)2+(y-v)2=r2. A kör egyenlete kétismeretlenes másodfokú egyenlet, ami átírva x2+y2-2ux-2vy+u2+v2-r2=0 alakú. Ezt egyszerűbben jelölve úgy is leírhatjuk, hogy x2+y2+Ax+By+C=0 Az ilyen alakban felírt kétismeretlenes másodfokú egyenlet akkor köregyenlet, ha A2+B2-4C pozitív.
Matematikatörténet: Descartes- i vonatkozásokat érdemes itt elmesélni.
Definíciója: A parabola azon pontok halmaza a síkon, amelyek a sík egy adott egyenesétől és egy adott, az egyenesre nem illeszkedő pontjától ugyanolyan távolságra vannak. Az adott egyenest a parabola vezéregyenesnek, az adott pontot a parabola fókuszpontjának hívjuk. A vezéregyenes és a fókuszpont távolságát paraméternek hívjuk, és p-vel jelöljük. Minden parabolának van tengelye, ez egy fókuszpontra illeszkedő egyenes, ami merőleges a vezéregyenesre. A parabola tengelyen lévő pontját tengelypontnak nevezzük. Ez éppen a fókuszpontot és a vezéregyenest összekötő szakasz felezőpontja. Ebben a pontban van a parabola csúcsa.
Tétel: az F(0;p/2) fókuszpontú y=-p/2 vezéregyenesű parabola egyenlete: y =1/2p *x2.
A tételt a videóban bizonyítjuk.
Ha a tengelypont nem az origóban van, hanem egy tetszőleges T(u;v) pontban, akkor a parabola egyenlete y=1/2p*(x-u)2+v alakban írható fel.
Ha a parabola ellenkező irányban nyílik, akkor az 1/2p tört elé egy mínusz jelet kell írni.
Minden másodfokú függvény grafikonja az y tengellyel párhuzamos tengelyű parabola, és minden y tengellyel párhuzamos tengelyű parabola valamelyik másodfokú függvény grafikonja.
Alkalmazás pl. parabolaantenna. Elmondjuk a működésének lényegét.
Most áttérnék a kör és egyenes kölcsönös helyzetének a tárgyalására. A síkban egy körnek és egy egyenesnek kettő, egy vagy nulla közös pontja lehet. A közös pontokat, azaz a metszéspontokat a kör és egyenes egyenletéből álló egyenletrendszer segítségével adhatjuk meg.
A helyzetük többféle lehet: lehet két közös metszéspont – ez egy szelőt határoz meg, ha egy közös pont van, akkor az egyenes érintője a körnek, ha nincs közös metszéspont, akkor az egyenes a körön kívül halad.
Egy parabolának és egy egyenesnek is 2, 1 vagy 0 közös pontja lehet. Ebben az esetben is egy két egyenletből álló két ismeretlenes egyenletrendszert kell megoldani, hogy megkapjuk hány metszéspont van. Fontos kiemelni, hogy ha 1 metszéspont van, akkor nem feltétlenül érintője az egyenes a parabolának, mert ha az egyenes párhuzamos a parabola tengelyével, akkor ő egy átmetsző egyenes. A parabola érintője olyan egyenes, ami nem párhuzamos a parabola tengelyével, és egy metszéspontja van a parabolával.
Ha tudjuk, hogy az egyenes az A(x0;y0) pontban érinti a parabolát, akkor meg tudjuk adni az érintő egyenes egyenletét deriválással. A deriváltfüggvényben az x=x0 helyen felvett helyettesítési érték adja meg az érintő meredekségét. A meredekség és az A pont ismeretében fel tudjuk írni az érintő iránytényezős egyenletét.
Koordináta-geometria alkalmazható geometriai feladatok megoldásában.
A grafikus megoldásnál azt használjuk fel, hogy a másodfokú kifejezések képe parabola. Akárcsak a másodfokú egyenletnél, az egyenlőtlenségnél is nullára rendezünk, majd a bal oldalon álló kifejezés által meghatározott függvényt ábrázoljuk. Az egyenlőtlenség megoldása a grafikonról leolvasható, a videón részletezzük, hogyan.
Néhány fizikai alkalmazást említünk a végén a csillagászat, a tükrök, mozgáspályák, építészet (statika) területéről.
A tétel megtanulását is segítjük, hogy a szakzsargon ne okozzon gondot, könnyebben memorizálni tudd a definíciókat, tételeket.