A kör kerülete a sugarával kifejezve: K = 2 ∙ r ∙ π, ahol r a kör sugara. (Ha egy kört végiggörgetünk egy egyenesen, úgy, hogy telejesen körbeforduljon, akkor a kör ekkora utat fog megtenni.)
A kör kerülete az átmérőjével kifejezve: K = d ∙ π, ahol d a kör átmérője
A kör területképlete: T = r2 ∙ π
Feladat: Egy kör átmérője 24 cm. Mekkora a kör kerülete? Mekkora a kör területe?
A kerülethez minden adott: K = d · π = 24 cm · 3,14 = 75,36 cm
A kör területképletéhez szükségünk van a kör sugarára. A sugár az átmérő fele, azaz 12 cm. Most be tudunk helyettesíteni a képletbe. cm-ekben:
T = r2 ∙ π = 122 · 3,14 = 452,26 cm2.
Ebben a videóban a kör egyenletével ismerkedhetsz meg. Megtanulhatod, hogyan kell felírni a kör egyenletét, visszafelé: hogyan lehet az egyenletből kiszámítani a középpont koordinátáit és a sugarát. Hogyan kell felírni a kör érintőjének egyenletét, kiszámítani körök és egyenesek metszéspontjait. Kattints és nézz körül az évfolyam videói között!
20. tétel: A kör és a parabola elemi úton és a koordinátasíkon. Kör és egyenes, parabola és egyenes kölcsönös helyzete. Másodfokú egyenlőtlenségek grafikus megoldása. Megmutatjuk a teljes kidolgozott tételt, úgy, ahogyan a vizsgán pl. el lehet mondani. A videóban kék színnel írtuk azt, amit mindenképp javaslunk, hogy te is írd fel a táblára a vizsgán. Nézzük tehát a tételt. Feleletemben a kört és a parabolát mutatom be elemi úton és a koordináta síkon. Kitérek a kör és egyenes, valamint a parabola és egyenes kölcsönös helyzetére is. Végül másodfokú egyenletek grafikus megoldásáról fogok beszélni és kitérek néhány matematikatörténeti vonatkozásra is. A kör az elemi és a koordinátageomatriában. Definíció: A kör azon pontok halmaza a síkon, amelyek egy adott ponttól egyenlő távolságra helyezkednek el. Az adott pontot a kör középpontjának, az adott távolságot pedig a kör sugarának hívjuk. A kört egyértelműen meghatározza a síkon a középpontja és a sugara. Kimondok egy körről szóló tételt: A K(u,v) középpontú, r sugarú kör egyenlete (x-u)2+(y-v)2=r2. A kör egyenlete kétismeretlenes másodfokú egyenlet, ami átírva x2+y2-2ux-2vy+u2+v2-r2=0 alakú. Ezt egyszerűbben jelölve úgy is leírhatjuk, hogy x2+y2+Ax+By+C=0 Az ilyen alakban felírt kétismeretlenes másodfokú egyenlet akkor köregyenlet, ha A2+B2-4C pozitív. Matematikatörténet: Descartes- i vonatkozásokat érdemes itt elmesélni. Mit kell tudni a paraboláról? Definíciója: A parabola azon pontok halmaza a síkon, amelyek a sík egy adott egyenesétől és egy adott, az egyenesre nem illeszkedő pontjától ugyanolyan távolságra vannak. Az adott egyenest a parabola vezéregyenesnek, az adott pontot a parabola fókuszpontjának hívjuk. A vezéregyenes és a fókuszpont távolságát paraméternek hívjuk, és p-vel jelöljük. Minden parabolának van tengelye, ez egy fókuszpontra illeszkedő egyenes, ami merőleges a vezéregyenesre. A parabola tengelyen lévő pontját tengelypontnak nevezzük. Ez éppen a fókuszpontot és a vezéregyenest összekötő szakasz felezőpontja. Ebben a pontban van a parabola csúcsa. Tétel: az F(0;p/2) fókuszpontú y=-p/2 vezéregyenesű parabola egyenlete: y =1/2p *x2. A tételt a videóban bizonyítjuk. Ha a tengelypont nem az origóban van, hanem egy tetszőleges T(u;v) pontban, akkor a parabola egyenlete y=1/2p*(x-u)2+v alakban írható fel. Ha a parabola ellenkező irányban nyílik, akkor az 1/2p tört elé egy mínusz jelet kell írni. Minden másodfokú függvény grafikonja az y tengellyel párhuzamos tengelyű parabola, és minden y tengellyel párhuzamos tengelyű parabola valamelyik másodfokú függvény grafikonja. Alkalmazás pl. parabolaantenna. Elmondjuk a működésének lényegét. Kör és egyenes kölcsönös helyzete. Most áttérnék a kör és egyenes kölcsönös helyzetének a tárgyalására. A síkban egy körnek és egy egyenesnek kettő, egy vagy nulla közös pontja lehet. A közös pontokat, azaz a metszéspontokat a kör és egyenes egyenletéből álló egyenletrendszer segítségével adhatjuk meg. A helyzetük többféle lehet: lehet két közös metszéspont – ez egy szelőt határoz meg, ha egy közös pont van, akkor az egyenes érintője a körnek, ha nincs közös metszéspont, akkor az egyenes a körön kívül halad. Parabola és egyenes kölcsönös helyzete. Egy parabolának és egy egyenesnek is 2, 1 vagy 0 közös pontja lehet. Ebben az esetben is egy két egyenletből álló két ismeretlenes egyenletrendszert kell megoldani, hogy megkapjuk hány metszéspont van. Fontos kiemelni, hogy ha 1 metszéspont van, akkor nem feltétlenül érintője az egyenes a parabolának, mert ha az egyenes párhuzamos a parabola tengelyével, akkor ő egy átmetsző egyenes. A parabola érintője olyan egyenes, ami nem párhuzamos a parabola tengelyével, és egy metszéspontja van a parabolával. Ha tudjuk, hogy az egyenes az A(x0;y0) pontban érinti a parabolát, akkor meg tudjuk adni az érintő egyenes egyenletét deriválással. A deriváltfüggvényben az x=x0 helyen felvett helyettesítési érték adja meg az érintő meredekségét. A meredekség és az A pont ismeretében fel tudjuk írni az érintő iránytényezős egyenletét. Koordináta-geometria alkalmazható geometriai feladatok megoldásában. Másodfokú egyenlőtlenségek grafikus megoldása. A grafikus megoldásnál azt használjuk fel, hogy a másodfokú kifejezések képe parabola. Akárcsak a másodfokú egyenletnél, az egyenlőtlenségnél is nullára rendezünk, majd a bal oldalon álló kifejezés által meghatározott függvényt ábrázoljuk. Az egyenlőtlenség megoldása a grafikonról leolvasható, a videón részletezzük, hogyan. Néhány fizikai alkalmazást említünk a végén a csillagászat, a tükrök, mozgáspályák, építészet (statika) területéről. A tétel megtanulását is segítjük, hogy a szakzsargon ne okozzon gondot, könnyebben memorizálni tudd a definíciókat, tételeket.
A körről és részeiről tanulunk részletesen. Megmutatjuk a kör középponti szögét, a körívet, körcikket. Kiszámítjuk a körcikk területét. Új mértékegységet tanulunk, a radiánt, ez a nevezetes szögek ívmértéke (radiánban mért pontos értéke). Átváltásokat végzünk fokból radiánba, radiánból fokba. Feladatokkal gyakorlunk.