05. Tételek: 21-25.
a) 21. Térelemek távolsága és szöge ...
Tananyag
|
Kezdés »
21. tétel: Térelemek távolsága és szöge. Térbeli alakzatok. Felszín- és térfogatszámítás.
A videóban látni és hallani fogsz egy kidolgozott, ötös feleletet ebből a tételből. Kékkel mutatjuk azokat, amiket felelet közben felírnánk a táblára. A végén pedig segítünk megtanulni a tételt.
Mik azok a térelemek, és mit jelent a távolságuk?
A pont, egyenes és sík azok az alapfogalmak, amiket együtt térelemeknek nevezünk.
Két térelem illeszkedő, ha egyik részhalmaza a másiknak. Megmutatjuk, mikor illeszkedik egy pont egy egyenesre; egy félegyenes egy egyenesre, illetve egy egyenes egy síkra.
Két egyenest metszőnek nevezünk, ha pontosan egy közös pontjuk van. Két egyenes párhuzamos, ha van olyan sík, amelyre mindkettő illeszkedik, de nem metszik egymást. Két egyenest kitérőnek hívunk, ha nincs olyan sík, amelyre mindkettő illeszkedik.
Két síkot metszőnek nevezünk, ha pontosan egy közös egyenesük van. Két síkot párhuzamosnak nevezünk, ha nem metszik egymást. Egy egyenest és egy síkot metszőnek nevezünk, ha pontosan egy közös pontjuk van. Egy egyenest és egy síkot párhuzamosnak nevezünk, ha nincs közös pontjuk.
Két illeszkedő vagy metsző térelem távolsága 0. A továbbiakban végigvesszük két pont távolságát, pont és egyenes, pont és sík távolságát; majd a különböző helyzetű egyenesek távolságát. Síkok távolságának eseteivel és egyenes és sík távolságának eseteivel is részletesen foglalkozunk.
A térelemek szögét hogyan határozhatjuk meg?
Egy síkban ugyanabból a pontból kiinduló félegyenest és az általuk meghatározott bármelyik síkrészt szögnek nevezzük. A szög szárai a félegyenesek, a síkrész pedig a szögtartomány.
Illeszkedő vagy párhuzamos térelemek szöge 0°.
Egyenesek hajlásszöge: Két metsző egyenes 4 szöget határoz meg melyek közül 2-2 egyenlő nagyságú. Ha a két egyenes merőleges egymásra, akkor az általuk bezárt szög 90°. Ha a két egyenes nem merőleges egymásra, akkor az általuk bezárt szög, azaz a két egyenes hajlásszöge a két fajta szög közül a kisebbik. Összességében elmondhatjuk, hogy két egyenes hajlásszöge sosem nagyobb 90°-nál. Két kitérő egyenes hajlásszöge megegyezik a tér bármely pontján átmenő és az adott egyenessekkel párhuzamos egyenesek hajlásszögével.
Sík és egyenes hajlásszöge: Ha az e egyenes metszi az S síkot, akkor az egyenes merőleges vetülete a síkon szintén egy egyenes, ezt jelöltem e’-vel. Ilyenkor a sík és egyenes hajlásszöge e és e’ egyenesek hajlásszöge. Megjegyezném, hogy ez a szög a legkisebb a sík egyenesei és az egyenes által bezárt szögek között.
Két sík hajlásszöge: Ha két sík nem párhuzamos egymással, akkor metszésvonaluk egy pontjában mindkét síkban merõlegest állítunk a metszésvonalra. A két sík hajlásszöge e két egyenes hajlásszögével egyenlõ. Ez a szög a pont megválasztásától független.
Mit nevezünk testnek a geometriában, és milyen speciális testekről tanultunk?
A térnek véges felületekkel határolt részét testnek nevezzük. A sokszöglapokkal határolt testek a poliéderek. Például a kocka, vagy a gúla. A szabályos testekre is külön kitérünk a tételben.
Definiáljuk a hengerszerű testeket, majd a hengert és a hasábot. A hengerszerű testeken kívül vannak még kúpszerű testek. Definiáljuk még a kúpot és a gúlát, az egyenes kúpot, ill. az egyenes gúlát. A csonkakúpszerű testekről is beszélünk. A térbeli alakzatok kapcsán az utolsó definíció a gömbfelületé.
Miket kell elmondani a testek felszínéről?
A poliéder felszíne az őt határoló véges számú sokszöglap területének az összege, amit A betűvel jelölünk. Nem poliéderek esetén, ha a test felülete síkba kiteríthető, akkor ennek a területe adja a sík felszínét. Ha a testnek van síkba ki nem teríthető felülete is (például félgömb), akkor ezek felszínét a beírt és köré írt poliéderek felszínének (megegyező) határértékeként értelmezzük. Forgástestek felszínét integrálszámítással is meg tudjuk határozni. A leggyakrabban használt felszín képletek közül néhányat ismertetünk.
Mit kell tudni emelt szinten a testek tréfogatáról?
A poliéder térfogata egy, a poliéderre jellemző szám, amely a következő 3 tulajdonsággal rendelkezik: Az egységkocka térfogata 1. Az egybevágó poliéderek térfogata egyenlő. A harmadik tulajdonság pedig, ha egy poliédert részpoliéderekre vágunk szét, akkor a részek térfogatának összege egyenlő az egész poliéder térfogatával. Ismertetünk néhány poliéder térfogatának kiszámolásához szükséges képleteket is a tétel kifejtése közben.
Eukleidész az Elemek című művében a geometriát axiomatikusan építette fel, azaz a szemléletre hagyatkozva alapfogalmakat, azaz axiómákat határozott meg, és ezek segítségével bizonyított állításokat. A hasábok, gúlák, gömb térfogatának vizsgálatára a kimerítés módszerét (beírt és körülírt hasábok térfogatával való közelítést) használta. Vizsgálta az öt szabályos testet, meghatározta térfogatukat, bebizonyította, hogy csak öt szabályos test létezik.
Forgástestek térfogatát az analízis módszereivel tudjuk meghatározni.
Ezek kiszámításáról szól a következő tétel. Ha f(x) függvény az [a;b] intervallumon folytonos és f(x) nem negatív, akkor az f(x) függvény grafikonjának az x tengely körüli megforgatásával keletkezett forgástest térfogata kiszámolható a függvény négyzetének integrálásával, a videóban részletezett módon. Ennek segítségével bizonyítható pl. a gömb térfogatának képlete.
Még egy tételt érdemes említeni a térfogatokkal kapcsolatban: Hasonló testek térfogatának aránya megegyezik a hasonlóság arányának köbével.
Ezeket a geometriai ismereteket alkalmazzák a térképészetben és földmérésben távolság- és szögmérésre. Az építészmérnöki munkában, fizika feladatok megoldása során.
b) 22. Területszámítás és integrálás ...
Tananyag
|
Kezdés »
22. Tétel: Területszámítás elemi úton és az integrálszámítás felhasználásával.
A tétel kifejtésében a területszámításról fogunk beszélni. Először elemi úton vizsgáljuk meg a témát, síkgeomatriai alakzatok területét részletezzük, majd áttérünk az integrálszámítás felhasználására. A tételt hallani fogod, és látni azt, amit közben érdemes a táblára írnod.
Hogyan lehet definiálni egy alakzat területét?
A területet úgy értelmezzük, mint egy függvényt, ahol minden síkidomhoz hozzárendelünk egy pozitív számot 3 tulajdonsággal. Ezek a következők: Az egységnégyzet területe 1. Az egybevágó sokszögek területe egyenlő. A 3. tulajdonság pedig úgy szól, hogy ha egy sokszöget feldarabolunk részsokszögekre, akkor a részek területének összege a sokszög területével egyenlő.
Hogyan számoljuk ki különböző sokszögek területét?
A sokszögek esetén a terület nagyságának meghatározása az egységnyi területtel való összevetés alapján történik. Ezt a szerepet tölti be az egységnégyzet. Nézzük át néhány speciális sokszög területének kiszámítási módját!
A téglalap területe két szomszédos oldalának szorzatával egyenlő. A paralelogramma területe az egyik alap és a hozzátartozó magasság szorzata. Részletezzük a háromszög területének képletét, a trapéz területének kiszámítását.
Mivel minden sokszög véges számú háromszögre darabolható, ezért a sokszög területe egyenlő a háromszögek területösszegével. A háromszög területének kiszámítására sok képlet van, ezek közül felírtam a leggyakrabban használtakat. Ezekben a képletekben s a félkerület, az r a beírt kör sugara, R pedig a háromszög körülírt körének a sugara.
Azt a tételt bizonyítjuk, hogy átalános négyszög területét úgy számíthatjuk ki, hogy az átlók hosszát megszorozzuk a közre zárt szögük szinuszával, és ezt a szorzatot osztjuk kettővel. A bizonyítást a videón részletezzük.
Szabályos sokszögek területét úgy kapjuk meg, hogy a középpontjukat összekötjük a csúcsokkal és így n db egyenlő szárú háromszöget kapunk, ezek területe már a középponti szög és a sugár ismeretében kiszámolható.
Kör területének kiszámítása.
Tétel: Az r sugarú kör területe r2pi-vel egyenlő.
Mi a kapcsolat a területszámítás és az integrálszámítás között?
A határozott integrállal függvénygörbe vonalával határolt síkidomok területét tudjuk meghatározni. A határozott integrál definíciójához szükségünk van még az intervallum felosztásának a definíciójára. Utána vesszük ennek a felosztásnak egy intervallumát, például az [xi-1;xi] zárt intervallumot. Kis mi legyen az f függvénynek ebben az intervallumban felvett értékeinek alsó határa, nagy Mi pedig a felső határa. Korlátos függvényeknél bizonyítható, hogy ezek az értékek léteznek. Az [xi-1;xi] intervallum fölé téglalapokat szerkesztünk, kettő darabot, kis mi, illetve nagy Mi magassággal. Ha ezt a felosztás összes intervallumában elvégezzük, megkapjuk a vizsgált tartomány egy körülírt és egy beírt sokszögét. Ezeknek a sokszögeknek vizsgáljuk meg a területét.
A beírt sokszög területét alsó közelítő összegnek hívjuk, a körülírt sokszög területét pedig felső közelítő összegnek hívjuk. A felosztást finomíthatjuk. Így végtelen sok alsó és felső összeg keletkezik, amelyekről elmondható, hogy semelyik alsó összeg nem lehet nagyobb semelyik felső összegnél.
Most már tudjuk definiálni a határozott integrált: Az [a; b] intervallumon korlátos, f függvény integrálható, ha bármely, minden határon túl finomodó felosztássorozatához tartozó alsó és felső összegei sorozatának közös határértéke van. Ezt a közös határértéket nevezzük az f függvény [a; b] intervallumon vett határozott integráljának.
Két függvény által közrezárt síkidom területe is kiszámolható a határozott integrállal.
Ha f(x)>g(x), akkor az f és g függvények görbéi által közrezárt síkidom területe az f – g függvény integrálásával számolható.
A tételt matematika-történeti vonatkozások és gyakorlati alkalmazáshoz kapcsolódó példák zárják.
A tétel végén pedig segítünk megtanulni is a tételt, gyakorolhatsz a saját tempódban.
c) 23. Kombinációk, binom. tétel...
Tananyag
|
Megnyitáshoz fizess elő ITT
23. tétel: Kombinációk. Binomiális tétel, a Pascal-háromszög. A valószínűség kiszámításának kombinatorikus modellje. A hipergeometrikus eloszlás.
A tételt kifejtve hallani fogod a videón, és közben megmutatjuk, mit érdemes a táblára írnod az emelt szintű szóbeli felelésnél. A tétel a témája a kombinatorika, és a valószínűségszámítás. Ezek véletlen tömegjelenségek törvényszerűségeivel foglalkoznak.
Mik azok a kombinációk, és hogyan lehet kiszámolni őket?
n elem k-ad osztályú ismétléses kombinációi: Legyen n egymástól különböző elemünk. Ha ezekből k darabot kiválasztunk minden lehetséges módon úgy, hogy a kiválasztott elemek sorrendjére nem vagyunk tekintettel, akkor n elem k-ad osztályú ismétléses kombinációit kapjuk. Azt a tételt bizonyítjuk, hogy az n elem k-ad osztályú ismétlés nélküli kombinációinak a számát az n alatt a k binomiális együttható adja meg. A binomiális együtthatók kiszámításának a módját is megnézzük a videón, és részletezzük a bizonyítást.
Az ismétléses kombináció definíciója így szól: Ha n különböző elemből kell k db-ot kiválasztani úgy, hogy a kiválasztás sorrendje nem számít, és a már kiválasztott elemeket újra kiválaszthatjuk, akkor n elem k-ad osztályú ismétléses kombinációját kapjuk. Tétel mondja ki ezek számát, ez pedig éppen n+k-1 alatt a k.
Miről szól a binomiális tétel?
Egy kéttagú összeg hatványozására ad összefüggést a binomiális tétel: egy kéttagú összeget úgy is n-edik hatványra emelhetünk, hogy összeadjuk a két tag összes olyan hatványának szorzatát, melyben a hatványok kitevőinek összege a kéttagú összeg kitevője, azaz n. Ezt megszorozzuk egy binomiális együtthatóval, mégpedig a Pascal-háromszög n-edik sorának annyiadik elemével, ahányadaik hatványon az első tag áll a szorzatokban Fontos megemlíteni, hogy a Pascal-háromszögben a sorok és a sorok elemeinek számozását is a 0-tól kezdjük.
Milyen tulajdonságai vannak a binomiális együtthatóknak?
A binomiális együttható két tulajdonságát ismertetem most: Mivel 0! definíció szerint 1-el egyenlő, ezért n alatt a 0 és n alatt az n is 1-gyel egy. A második tulajdonság, hogy az n elem közül k darabot és n-k darabot is ugyanannyi-féleképpen lehet kiválasztani. Tehát n alatt a k és n alatt az n-k egyenlők.
Az eddig ismertetett definíciók és tételek segítségével megoldhatunk olyan kiválasztási problémákat, mint például hogy hányféleképp lehet kitölteni egy ötöslottó szelvényt. Vagy például ki tudjuk számolni, hogy egy n elemű halmaznak hány darab k elemű részhalmaza van.
Mi a Pascal háromszög? Hogyan számíthatjuk ki az elemeit?
A Pascal háromszög lényegében a binomiális együtthatók háromszög alakban való elrendezése. Ahogy már említettem a sorok számozása nullával kezdődik. A páros számú és páratlan számú sorokban a számok el vannak csúsztatva egymáshoz képest. A háromszög felírása nem nehéz, az első sorba csupán egy egyest kell írni. A következő sorok felírásánál a szabály a következő: az új számot úgy kapjuk meg, ha összeadjuk a felette balra és felette jobbra található két számot. Az n. sor k. elemének kiszámítására a képletet a háromszög névadója, a francia matematikus Pascal adta meg. A Pascal háromszög n-edik sorában a kéttagú összeg n-edik hatványának együtthatói, azaz a binomiális együtthatók állnak.
Mit jelent a valószínűségszámítás kombinatorikai modellje? .
A valószínűségszámítás axiómái:
1.) Tetszőleges A esemény valószínűsége nagyobb vagy egyenlő mint 0 és kisebb vagy egyenlő, mint 1.
2.) Biztos esemény valószínűsége 1, lehetetlen esemény valószínűsége 0.
3.) Ha A és B egymást kizáró események, akkor a valószínűség így is számolható: P(A+B) = P(A) + P(B)
A esemény valószínűsége és A esemény komplementerének a valószínűsége együtt 1-el egyenlő.
Mi a hipergeometrikus eloszlás és hogyan számolhatjuk ki?
Most áttérnék a diszkrét eloszlásokon belül a hipergeometrikus eloszláshoz. Ehhez definiáljuk először a valószínűségi változót, majd a hipergeometrikus eloszlást, és elmondjuk annak jellemzőit, és megmutatjuk a kiszámításának módját. A hipergeometrikus eloszlás várható értékét is felírjuk.
Matematikatörténeti vonatkozásokra is kitérünk a tétel kifejtése közben.
d) 24. Permutációk, variációk...
Tananyag
|
Megnyitáshoz fizess elő ITT
24. tétel: Permutációk, variációk. A binomiális eloszlás. A valószínűség kiszámításának geometriai modellje.
A kidolgozott tételt látod-hallod a videón, pontosabban azt látod, amit a vizsgán érdemes felírnod a táblára. Az előző tételhez hasonlóan itt is kombinatorikai és valószínűségszámítási ismereteket kell bemutatni.
Mi az a permutáció, milyen feladatokhoz kapcsolódik, hogyan kell kiszámolni? Mi a különbség az ismétlés nélküli és az ismétléses permutáció között?
Egy adott n elemű halmaz elemeinek egy ismétlés nélküli permutációján az n különböző elem egy sorba rendezését, azaz sorrendjét értjük.
Tétel: Egy n elemű halmaz ismétlés nélküli permutációinak száma n faktoriálissal egyenlő.
Bizonyítás: Az n db hely közül az első helyre n féle elem közül választhatok, ezért a lehetőségek száma n. A második helyre már csak (n-1) elem közül tudok választani, hiszen az első helyre már választottam. Ezt a gondolatmenetet folytatva egyértelmű, hogy az utolsó előtti helyre 2, az utolsó helyre pedig 1-féle elem közül tudok választani. A választások egymástól függetlenek, így a lehetőségek számát össze kell szorozni, így kapunk n!-t.
Ha az n elem között van n1, n2, …, nk egymással megegyező, akkor az elemek egy sorba rendezését ismétléses permutációnak nevezzük. Ha n elem között n1, n2, … nk db megegyező van, és n1+n2+…+ nk=n, akkor az ismétléses permutációk számához n!-t osztani kell n1! -sal, n2!-sal, stb… nk!-sal.
Mi a variáció, mi a különbség az ismétlés nélküli és az ismétléses variáció között? Hogyan kell kiszámolni a lehetséges variációk számát?
Vegyünk n db egymástól különböző elemet. Ha ezekből kiválasztunk k db-ot minden lehetséges módon úgy, hogy a kiválasztott elemek sorrendje is számít, akkor az n elem k-ad osztályú ismétlés nélküli variációját kapjuk. Kikötjük, hogy k kisebb vagy egyenlő, mint n. Azt a tételt bizonyítjuk a videón, hogy az n elem k-ad osztályú ismétlés nélküli variációinak száma n!/(n-k)!
Definiáljuk az ismétléses variációt: Legyen n db egymástól különböző elemünk. Ha ezekből kiválasztunk k db-ot az összes lehetséges módon úgy, hogy a kiválasztott elemek sorrendje is számít, és egy elemet többször is választhatunk, akkor az n elem egy k-ad osztályú ismétléses variációját kapjuk. Tétel mondja ki, hogy n elem k-ad osztályú ismétléses variációinak száma nk.
Mit jelent a valószínűségi változó?
Ehhez először szükséges definiálni a valószínűségi változót. A diszkrét valószínűségi változó az eseménytéren értelmezett valós értékű függvény. Általában kszível, vagy nagy X-szel jelöljük. Ha a valószínűségi változó lehetséges értékeinek száma véges, vagy megszámlálhatóan végtelen, akkor diszkrét valószínűségi változóról beszélünk.
Milyen eloszlás a binomiális-eloszlás?
A binomiális-eloszlás olyan kísérletnél fordul elő, amelynek csak két kimenetele lehetséges, azaz A esemény vagy bekövetkezik vagy nem. Azt is mondhatjuk, hogy A esemény bekövetkezése a kedvező eset, ennek a valószínűsége p. A kedvezőtlen esemény valószínűsége, azaz, hogy A esemény nem következik be 1-p.
Tétel: Binomiális eloszlásnál, ha a kísérletet n-szer ismételjük, akkor annak a valószínűsége, hogy az A esemény k-szor következik be, úgy adható meg, hogy n alatt a k-szor pk*(1-p)n-k. Itt is ki kell kötni, hogy k kisebb vagy egyenlő, mint n. Megemlíteném, hogy binomiális eloszlásra vezetnek a visszatevéses mintavétel esetei. A binomiális-eloszlás várható értéke könnyen számolható. Az eloszlás két paraméterét n-t és p-t kell összeszorozni.
Matematikatörténeti vonatkozásokat is említünk a valószínűségszámítással és kombinatorikával kapcsolatban.
Mi a geometriai valószínűség? Hogyan kell kiszámítani?
Ha az eseménytér nem megszámlálható halmaz, de mérhető (például van hossza, területe vagy térfogata), az eseményei mérhetők, és valószínűségük egyenesen arányos a méretükkel, akkor ezt az eseményteret geometriai valószínűségi mezőnek nevezzük. Ekkor az A esemény valószínűsége számítható úgy, hogy az A eseménynek megfelelő részalakzat mértékét elosztjuk a kísérlettel kapcsolatos teljes alakzat mértékével. Ezt általában úgy jelöljük, hogy m/M.
Néhány gyakorlati példát sorolunk fel végül a geometriai valószínűség alkalmazására.
e) 25. Bizonyítási módszerek...
Tananyag
|
Megnyitáshoz fizess elő ITT
25. tétel: Bizonyítási módszerek és bemutatásuk tételek bizonyításában.
Az utolsó tételt akár viszonylag könnyen meg is úszhatod, és válogathatsz az előző szóbeli tételekből hozzá példákat (ezzel időt spórolhatsz meg.) Mi most megmutatunk Neked másik bizonyításokat is, hogy több bizonyítás lehessen a tarsolyodban, ha szükséged lenne rá.
Négyféle bizonyítási módszert használunk középiskolában: a direkt bizonyítást, az indirekt bizonyítást, a teljes indukciót és a skatulya-elvet. Ezeket a módszereket be is mutatjuk tételek bizonyításában.
1. A matematikában leggyakrabban a direkt bizonyítást használjuk.
Direkt bizonyításnak nevezzük azt az eljárást, amikor igaz feltételekből például axiómákból vagy korábban bizonyított tételekből, helyes logikai lépések során a bizonyítandó állításhoz jutunk.
Thálesz-tételét fogjuk így bizonyítani a videón. A tétel így szól: Ha egy kör egyik átmérőjének két végpontját összekötjük a körvonal átmérővégpontoktól különböző bármely más pontjával, akkor derékszögű háromszöget kapunk.
A bizonyításhoz a körben kialakuló egyenlőszárú háromszögeket kell felhasználni. Néhány szögekre vonatkozó összefüggést felírva megkapjuk a bizonyítandó állítást.
2. Hogyan működik az indirekt bizonyítás?
Az indirekt módszer két logikai törvényen alapul: minden kijelentés igaz vagy hamis és egy igaz állítás tagadása hamis, és fordítva, hamis kijelentés tagadása igaz. Indirekt bizonyítási módot akkor érdemes választani, ha az állítás tagadása könnyebben kezelhető, mint maga az állítás. A precíz definíció így szól: Indirekt bizonyításnak nevezzük azt az eljárást, amikor feltételezzük a bizonyítandó állítás tagadását, majd helyes logikai lépések során ellentmondásra jutunk. Egy klasszikus, ide tartozó bizonyítás, hogy a gyök kettő irracionális szám (ezt bizonyítjuk a 2. tétel kifejtésekor) Most azonban a Pitagorasz-tétel megfordítását fogjuk bebizonyítani indirekt módon.
A Pitagorasz-tétel megfordítása: ha egy háromszögben két oldalhossz négyzetének összege egyenlő a harmadik oldal négyzetével, akkor a háromszög derékszögű. A Pitagorasz tételből tudjuk, hogy a2+b2=c2. Indirekten tegyük fel, hogy ez a háromszög nem derékszögű. Rajzolunk egy általános háromszöget, aminek az oldalai a, b és c. Ezután rajzolunk egy derékszögű háromszöget a, b befogókkal, ez lesz az AB’C háromszög. … A folytatásban belátjuk, hogy a két háromszögnek egybevágónak kell lenni. Evvel viszont ellentmondásra jutunk, hiszen az indirekt feltevésben azt mondtuk, hogy a háromszög nem derékszögű. Ezzel bebizonyítottuk a Pitagorasz-tétel megfordítását.
3. Hogyan kell teljes indukciós bizonyítást levezetni?
A teljes indukció olyan állítások bizonyítására alkalmas, melyek n pozitív egész számtól függenek. A teljes indukciós eljárás során először bebizonyítjuk az állítást n = 1-re (vagy valamilyen konkrét értékre). Ezután feltételezzük, hogy az állítás igaz n = k-ra, ez az úgynevezett indukciós feltevés. 3. lépésben az indukciós feltevés felhasználásával bebizonyítjuk, hogy az állítás igaz n = (k + 1)-re. Ezzel az állítást minden n pozitív egész számra bizonyítottnak tekintjük
Azt a tételt fogom bizonyítani, hogy Ha egy számtani sorozat első tagja a1, különbsége d, akkor a számtani sorozat első n tagjának összege így számolható, ahogy ide felírtam. A 3 lépés: 1.) megvizsgálom, hogy n=1-re teljesül-e az állítás. Ez könnyen belátható, behelyettesítés és egyszerűsítés után megkapom, hogy az első egy tag összege a1. Ez nyilvánvalóan igaz.
2.) Felírjuk az indukciós feltételt, azaz, hogy n=k-ra teljesül az állítás. Az összefüggésbe n helyére k-t írunk.
3. lépés: Be kell látni, hogy n=k+1-re is teljesül az állítás. Ehhez behelyettesítettjük az eredeti képletbe n helyére k+1-et. És az előző (k-ra vonatkozó) összefüggést felhasználva algebrai átalakításokkal ügyesen kihozzuk a k+1-re vonatkozó összefüggést.
A teljes indukció első írásos emléke 1575-ből származik: Ekkor bizonyította be a Maurolico olasz matematikus az első n páratlan szám összegére vonatkozó tételt ilyen módon.
4. A skatulya-elv mit jelent?
Tétel: Ha n darab tárgyat k darab skatulyában helyezünk el, és n > kp, akkor biztosan lesz legalább egy olyan skatulya, amelyikbe legalább p + 1 tárgy kerül.
Azt a tételt bizonyítjuk be skatulyaelvvel, hogy ha p és q pozitív egész számok, akkor a p/q szám tizedes tört alakja vagy véges, vagy végtelen, de szakaszos tizedes tört. Ha p-t elosztjuk q-val, akkor q féle osztási maradékot kaphatunk. 0-t, 1-t, 2-t és így tovább, egészen q-1-ig. Ezek lesznek a skatulyák, és könnyen belátható, hogy emiatt legfeljebb a q-adik osztásnál már olyan maradékot kapunk, amely korábban már volt, azaz innen ismétlődni fognak a tizedes tört jegyei... A skatulyaelvet Dirichlet (1805–1859) francia matematikus bizonyította be.
Gyakorlati alkalmazásként az összes, középiskolában tanult tételt fel lehet hozni, mindegyiket valamelyik fenti módszer segítségével bizonyítottuk.
A tétel végén matematikatörténeti vonatkozásokat mutatunk be.